Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.365
Filtrar
1.
Microb Pathog ; 171: 105730, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35995253

RESUMO

Apolipoprotein E (ApoE) is the major ligand for the transporting and removal of chylomicrons and lipoproteins by the liver. Since the creation of the ApoE-knockout mice, it is well established that ApoE deficiency results in spontaneous atherosclerosis in aged animals. Atherosclerosis is also observed in animals infected with Trypanosoma cruzi, a protozoan that elicits a systemic inflammatory response in mammalian hosts, culminating in damage to cardiac, neuronal, and endothelial cells. Pro-atherogenic effects related to the experimental infection with T. cruzi may be induced by inflammatory components affecting the vascular wall. Herein, we evaluated whether infection with different strains of T. cruzi worsened the atherogenic lesions observed in aged ApoE-/- mice. After four weeks of infection with Berenice-78 (Be-78) or Colombian (Col) strains of the parasite, mice presented increased CCL2 and CCL5 production and high migration of inflammatory cells to cardiac tissue. Although the infection with either strain did not affect the survival rate, only the infection with Col strain caused abundant parasite growth in blood and heart and increased aortic root lesions in ApoE-/- mice. Our findings show, for the first time that ApoE exerts a protective anti-atherosclerotic role in the aortic root of mice in the acute phase of experimental infection with the Col strain of T. cruzi. Further studies should target ApoE and nutritional interventions to modulate susceptibility to cardiovascular disabilities after T. cruzi infection, minimizing the risk of death in both experimental animals and humans.


Assuntos
Apolipoproteínas E , Aterosclerose , Doença de Chagas , Trypanosoma cruzi , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/complicações , Aterosclerose/patologia , Doença de Chagas/complicações , Quilomícrons , Células Endoteliais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Biochem Pharmacol ; 201: 115075, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525326

RESUMO

Chronic inflammation in atherosclerosis reflects a failure in the resolution of inflammation. Pro-resolving lipid mediators derived from omega-3 fatty acids reduce the development of atherosclerosis in murine models. The aim of the present study was to decipher the role of the specialized proresolving mediator (SPM) resolvin D2 (RvD2) in atherosclerosis and its signaling through the G-protein coupled receptor (GPR) 18. The ligand and receptor were detected in human coronary arteries in relation to the presence of atherosclerotic lesions and its cellular components. Importantly, RvD2 levels were significantly higher in atherosclerotic compared with healthy human coronary arteries. Furthermore, apolipoprotein E (ApoE) deficient hyperlipidemic mice were treated with either RvD2 or vehicle in the absence and presence of the GPR18 antagonist O-1918. RvD2 significantly reduced atherosclerosis, necrotic core area, and pro-inflammatory macrophage marker expression. RvD2 in addition enhanced macrophage phagocytosis. The beneficial effects of RvD2 were not observed in the presence of O-1918. Taken together, these results provide evidence of atheroprotective pro-resolving signalling through the RvD2-GPR18 axis.


Assuntos
Apolipoproteínas E , Aterosclerose , Doença da Artéria Coronariana , Ácidos Docosa-Hexaenoicos , Receptores Acoplados a Proteínas G , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
3.
J Nutr Biochem ; 101: 108945, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35016999

RESUMO

Maternal hypercholesterolemia (MHC), a pathological condition characterized by an exaggerated rise in maternal serum cholesterol during pregnancy, may influence offspring hepatic lipid metabolism and increase the risk of nonalcoholic fatty liver disease (NAFLD). As NAFLD is characterized by a sexual dimorphic response, we assessed whether early-life exposure to excessive cholesterol influences the development of NAFLD in offspring and whether this occurs in a sex-specific manner. Female apoE-/- mice were randomly assigned to a control (CON) or a high cholesterol (CH; 0.15%) diet prior to breeding. At parturition, a cross-fostering approach was used to establish three groups: (1) normal cholesterol exposure throughout gestation and lactation (CON-CON); (2) excessive cholesterol exposure throughout gestation and lactation (CH-CH); and (3) excessive cholesterol exposure in the gestation period only (CH-CON). Adult male offspring (PND 84) exposed to excessive cholesterol during gestation only (CH-CON) demonstrated hepatic triglyceride (TG) accumulation and reduced lipogenic gene expression. However, male mice with a prolonged cholesterol exposure throughout gestation and lactation (CH-CH) had a similar, but not exacerbated hepatic response. Further, with the exception of higher serum TG in adult CH-CH females, evidence for a programming effect in female offspring was largely absent in comparison with males. These results indicate a sexual dimorphic response with respect to the effect of MHC on later life hepatic steatosis and highlight the gestation period as the most influential malprogramming window for hepatic lipid dysfunction in males.


Assuntos
Colesterol na Dieta , Hipercolesterolemia , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Complicações na Gravidez , Caracteres Sexuais , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Peso Corporal , Feminino , Coração/anatomia & histologia , Lactação , Lipídeos/sangue , Fígado/anatomia & histologia , Masculino , Camundongos , Tamanho do Órgão , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Triglicerídeos/sangue
4.
Nat Commun ; 13(1): 215, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017526

RESUMO

Macrophages are integral to the pathogenesis of atherosclerosis, but the contribution of distinct macrophage subsets to disease remains poorly defined. Using single cell technologies and conditional ablation via a LysMCre+ Clec4a2flox/DTR mouse strain, we demonstrate that the expression of the C-type lectin receptor CLEC4A2 is a distinguishing feature of vascular resident macrophages endowed with athero-protective properties. Through genetic deletion and competitive bone marrow chimera experiments, we identify CLEC4A2 as an intrinsic regulator of macrophage tissue adaptation by promoting a bias in monocyte-to-macrophage in situ differentiation towards colony stimulating factor 1 (CSF1) in vascular health and disease. During atherogenesis, CLEC4A2 deficiency results in loss of resident vascular macrophages and their homeostatic properties causing dysfunctional cholesterol metabolism and enhanced toll-like receptor triggering, exacerbating disease. Our study demonstrates that CLEC4A2 licenses monocytes to join the vascular resident macrophage pool, and that CLEC4A2-mediated macrophage homeostasis is critical to combat cardiovascular disease.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/genética , Vasos Sanguíneos/metabolismo , Lectinas Tipo C/genética , Macrófagos/metabolismo , Animais , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Aterosclerose/patologia , Vasos Sanguíneos/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Morte Celular/genética , Diferenciação Celular , Linhagem da Célula/genética , Colesterol/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Homeostase/genética , Humanos , Lectinas Tipo C/deficiência , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Monócitos/patologia , Transdução de Sinais , Análise de Célula Única
5.
J Biol Chem ; 298(2): 101582, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35031322

RESUMO

Lysine N-pyrrolation, a posttranslational modification, which converts lysine residues to Nε-pyrrole-L-lysine, imparts electronegative properties to proteins, causing them to mimic DNA. Apolipoprotein E (apoE) has been identified as a soluble receptor for pyrrolated proteins (pyrP), and accelerated lysine N-pyrrolation has been observed in apoE-deficient (apoE-/-) hyperlipidemic mice. However, the impact of pyrP accumulation consequent to apoE deficiency on the innate immune response remains unclear. Here, we investigated B-1a cells known to produce germline-encoded immunoglobulin M (IgM) from mice deficient in apoE and identified a particular cell population that specifically produces IgM antibodies against pyrP and DNA. We demonstrated an expansion of B-1a cells involved in IgM production in the peritoneal cavity of apoE-/- mice compared with wild-type mice, consistent with a progressive increase of IgM response in the mouse sera. We found that pyrP exhibited preferential binding to B-1a cells and facilitated the production of IgM. B cell receptor analysis of pyrP-specific B-1a cells showed restricted usage of gene segments selected from the germline gene set; most sequences contained high levels of non-templated-nucleotide additions (N-additions) that could contribute to junctional diversity of B cell receptors. Finally, we report that a subset of monoclonal IgM antibodies against pyrP/DNA established from the apoE-/- mice also contained abundant N-additions. These results suggest that the accumulation of pyrP due to apoE deficiency may influence clonal diversity in the pyrP-specific B cell repertoire. The discovery of these unique B-1a cells for pyrP/DNA provides a key link connecting covalent protein modification, lipoprotein metabolism, and innate immunity.


Assuntos
Apolipoproteínas E , Subpopulações de Linfócitos B , DNA , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Subpopulações de Linfócitos B/metabolismo , DNA/genética , DNA/metabolismo , Imunoglobulina M/metabolismo , Lisina/metabolismo , Camundongos , Receptores de Antígenos de Linfócitos B
6.
Int Immunopharmacol ; 102: 108413, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34891003

RESUMO

OBJECT: Atherosclerosis (AS) is caused by chronic inflammation. Artesunate (ART), a sesquiterpene lactone endoperoxide isolated from Chinese herbal medicine, displays excellent anti-inflammatory activity. In this study, we investigated the effects of artesunate on atherosclerosis in ApoE knock-out mice, and used untargeted metabolomics to determine metabolite changes in these mice following ART treatment. METHODS: ApoE knock-out mice were fed a western diet and administered ART for eight weeks. Untargeted metabolomics was used to detect differential metabolites following the administration of ART. Oil Red O was used to assess plaque size, western blot and ELISA were used to detect inflammatory factors, and flow cytometry was used to detect the expression of markers on macrophages. RESULTS: Results of the in vivo experiment suggested that ART reduced atherosclerotic plaques in murine aortic root. In addition both in vivo and vitro experiments suggested that ART reduced the expression levels of inflammating cytokines, but enhanced those of the anti-inflammatory cytokines in macrophages. Untargeted metabolomic analysis demonstrated that multiple metabolic pathways, which were blocked in AS mice, showed different degrees of improvement following ART treatment. Furthermore, bioinformatic analyses showed that the HIF-1α pathway was altered in the AS mice and the ART treatment mice. In vitro experiments confirmed that LPS-induced upregulation of HIF-1α expression and activation of the NF-κB signaling pathways was significantly inhibited by ART treatment. CONCLUSION: These results suggest that ART exerts anti-atherosclerosis effects by inhibiting M1 macrophage polarization. One of the molecular mechanisms is that ART inhibits M1-like macrophage polarization via regulating HIF-1α and NF-κB signaling pathways.


Assuntos
Artesunato/uso terapêutico , Aterosclerose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Animais , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Polaridade Celular/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
7.
Arterioscler Thromb Vasc Biol ; 42(1): 35-48, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34758633

RESUMO

OBJECTIVE: Animal models of atherosclerosis are used extensively to interrogate molecular mechanisms in serial fashion. We tested whether a novel systems biology approach to integration of preclinical data identifies novel pathways and regulators in human disease. Approach and Results: Of 716 articles published in ATVB from 1995 to 2019 using the apolipoprotein E knockout mouse to study atherosclerosis, data were extracted from 360 unique studies in which a gene was experimentally perturbed to impact plaque size or composition and analyzed using Ingenuity Pathway Analysis software. TREM1 (triggering receptor expressed on myeloid cells) signaling and LXR/RXR (liver X receptor/retinoid X receptor) activation were identified as the top atherosclerosis-associated pathways in mice (both P<1.93×10-4, TREM1 implicated early and LXR/RXR in late atherogenesis). The top upstream regulatory network in mice (sc-58125, a COX2 inhibitor) linked 64.0% of the genes into a single network. The pathways and networks identified in mice were interrogated by testing for associations between the genetically predicted gene expression of each mouse pathway-identified human homolog with clinical atherosclerosis in a cohort of 88 660 human subjects. Homologous human pathways and networks were significantly enriched for gene-atherosclerosis associations (empirical P<0.01 for TREM1 and LXR/RXR pathways and COX2 network). This included 12(60.0%) TREM1 pathway genes, 15(53.6%) LXR/RXR pathway genes, and 67(49.3%) COX2 network genes. Mouse analyses predicted, and human study validated, the strong association of COX2 expression (PTGS2) with increased likelihood of atherosclerosis (odds ratio, 1.68 per SD of genetically predicted gene expression; P=1.07×10-6). CONCLUSIONS: PRESCIANT (Preclinical Science Integration and Translation) leverages published preclinical investigations to identify high-confidence pathways, networks, and regulators of human disease.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/genética , Redes Reguladoras de Genes , Biologia de Sistemas , Adulto , Idoso , Animais , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Fenótipo , Placa Aterosclerótica , Medição de Risco , Fatores de Risco , Fatores Sexuais , Especificidade da Espécie
8.
Transl Res ; 240: 33-49, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34478893

RESUMO

Identification of patients with high-risk asymptomatic atherosclerotic plaques remains an elusive but essential step in preventing stroke. However, there is a lack of animal model that provides a reproducible method to predict where, when and what types of plaque formation, which fulfils the American Heart Association (AHA) histological classification of human plaques. We have developed a predictive mouse model that reflects different stages of human plaques in a single carotid artery by means of shear-stress modifying cuff. Validated with over 30000 histological sections, the model generates a specific pattern of plaques with different risk levels along the same artery depending on their position relative to the cuff. The further upstream of the cuff-implanted artery, the lower the magnitude of shear stress, the more unstable the plaques of higher grade according to AHA classification; with characteristics including greater degree of vascular remodeling, plaque size, plaque vulnerability and inflammation, resulting in higher risk plaques. By weeks 20 and 30, this model achieved 80% and near 100% accuracy respectively, in predicting precisely where, when and what stages/AHA types of plaques develop along the same carotid artery. This model can generate clinically-relevant plaques with varying phenotypes fulfilling AHA classification and risk levels, in specific locations of the single artery with near 100% accuracy of prediction. The model offers a promising tool for development of diagnostic tools to target high-risk plaques, increasing accuracy in predicting which individual patients may require surgical intervention to prevent stroke, paving the way for personalized management of carotid atherosclerotic disease.


Assuntos
Artérias Carótidas/patologia , Placa Aterosclerótica/patologia , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Biomarcadores/metabolismo , Artérias Carótidas/fisiopatologia , Colágeno/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Inflamação/complicações , Inflamação/patologia , Lipídeos/química , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/complicações , Placa Aterosclerótica/fisiopatologia , Placa Aterosclerótica/prevenção & controle , Resistência ao Cisalhamento , Estresse Mecânico , Pesquisa Translacional Biomédica , Remodelação Vascular
9.
J Clin Endocrinol Metab ; 107(2): 538-548, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34467996

RESUMO

CONTEXT: Dysbetalipoproteinemia (DBL) is characterized by the accumulation of remnant lipoprotein particles and associated with an increased risk of cardiovascular and peripheral vascular disease (PVD). DBL is thought to be mainly caused by the presence of an E2/E2 genotype of the apolipoprotein E (APOE) gene, in addition to environmental factors. However, there exists considerable phenotypic variability among DBL patients. OBJECTIVE: The objectives were to verify the proportion of DBL subjects, diagnosed using the gold standard Fredrickson criteria, who did not carry E2/E2 and to compare the clinical characteristics of DBL patients with and without E2/E2. METHODS: A total of 12 432 patients with lipoprotein ultracentrifugation as well as APOE genotype or apoE phenotype data were included in this retrospective study. RESULTS: Among the 12 432 patients, 4% (n = 524) were positive for Fredrickson criteria (F+), and only 38% (n = 197) of the F+ individuals were E2/E2. The F+ E2/E2 group had significantly higher remnant cholesterol concentration (3.44 vs 1.89 mmol/L) and had higher frequency of DBL-related xanthomas (24% vs 2%) and floating beta (95% vs 11%) than the F+ non-E2/E2 group (P < 0.0001). The F+ E2/E2 group had an independent higher risk of PVD (OR 11.12 [95% CI 1.87-66.05]; P = 0.008) events compared with the F+ non-E2/E2 group. CONCLUSION: In the largest cohort of DBL worldwide, we demonstrated that the presence of E2/E2 was associated with a more severe DBL phenotype. We suggest that 2 DBL phenotypes should be distinguished: the multifactorial remnant cholesterol disease and the genetic apoE deficiency disease.


Assuntos
Apolipoproteínas E/deficiência , Colesterol/sangue , Hiperlipoproteinemia Tipo III/diagnóstico , Adulto , Apolipoproteínas E/sangue , Apolipoproteínas E/genética , Diagnóstico Diferencial , Testes Genéticos , Técnicas de Genotipagem , Humanos , Hiperlipoproteinemia Tipo III/sangue , Hiperlipoproteinemia Tipo III/genética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Índice de Gravidade de Doença
10.
Comput Math Methods Med ; 2021: 9685660, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899973

RESUMO

Chronic inflammation can stimulate the formation and progression of atherosclerotic plaques and increase the vulnerability of plaques. However, there are few studies on the changes of carotid inflammatory plaques during treatment. Our study attempted to investigate the use of superparamagnetic iron oxide nanoparticle (SPION) ultrasound imaging to detect the expression of vascular cell adhesion molecule-1 (VCAM-1) in patients with carotid plaques and analyze the effects of SPION ultrasound imaging in inflammatory plaque visualization effect. SPION microbubble contrast agents have good imaging effects both in vivo and in vitro. We conjugated the VCAM-1 protein to the microbubbles wrapped in SPIONs to form SPIONs carrying VCAM-1 antibodies. Observe the signal intensity of SPIONs carrying VCAM-1 antibody to arteritis plaque. The results showed that the SPION contrast agent carrying VCAM-1 antibody had higher peak gray-scale video intensity than the other two groups of contrast agents not carrying VCAM-1 antibody. It shows that SPIONs have excellent imaging effects in ultrasound imaging, can evaluate the inflammatory response of arterial plaque lesions, and are of great significance for the study of carotid inflammatory plaque changes.


Assuntos
Doenças das Artérias Carótidas/diagnóstico por imagem , Nanopartículas Magnéticas de Óxido de Ferro , Placa Aterosclerótica/diagnóstico por imagem , Ultrassonografia/métodos , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Biologia Computacional , Meios de Contraste , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Lipídeos/sangue , Nanopartículas Magnéticas de Óxido de Ferro/ultraestrutura , Masculino , Microbolhas , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Ratos , Ratos Transgênicos , Molécula 1 de Adesão de Célula Vascular/metabolismo
11.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830135

RESUMO

Dyslipidemia is commonly linked to skeletal muscle dysfunction, accumulation of intramyocellular lipids, and insulin resistance. However, our previous research indicated that dyslipidemia in apolipoprotein E and low-density lipoprotein receptor double knock-out mice (ApoE/LDLR -/-) leads to improvement of exercise capacity. This study aimed to investigate in detail skeletal muscle function and metabolism in these dyslipidemic mice. We found that ApoE/LDLR -/- mice showed an increased grip strength as well as increased troponins, and Mhc2 levels in skeletal muscle. It was accompanied by the increased skeletal muscle mitochondria numbers (judged by increased citrate synthase activity) and elevated total adenine nucleotides pool. We noted increased triglycerides contents in skeletal muscles and increased serum free fatty acids (FFA) levels in ApoE/LDLR -/- mice. Importantly, Ranolazine mediated inhibition of FFA oxidation in ApoE/LDLR -/- mice led to the reduction of exercise capacity and total adenine nucleotides pool. Thus, this study demonstrated that increased capacity for fatty acid oxidation, an adaptive response to dyslipidemia leads to improved cellular energetics that translates to increased skeletal muscle strength and contributes to increased exercise capacity in ApoE/LDLR -/- mice.


Assuntos
Dislipidemias/fisiopatologia , Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Força Muscular/fisiologia , Nucleotídeos de Adenina/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Glicemia/metabolismo , Dislipidemias/genética , Dislipidemias/metabolismo , Ácidos Graxos/sangue , Resistência à Insulina/genética , Lipídeos/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Força Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Cadeias Pesadas de Miosina/metabolismo , Oxirredução/efeitos dos fármacos , Ranolazina/farmacologia , Receptores de LDL/deficiência , Receptores de LDL/genética , Troponina/metabolismo
12.
Nutrients ; 13(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34836239

RESUMO

Obesity is associated with the risk of cardiovascular disease, and non-nutritive sweetener, such as acesulfame potassium (AceK) has been used to combat obesity. However, the effects of AceK on cardiovascular disease are still unclear. In this study, high cholesterol diet (HCD)-fed ApoE-/- mice had dysregulated plasma lipid profile, and developed atherosclerosis, determined by atherosclerotic plaque in the aorta. Supplement of AceK in HCD worsened the dyslipidemia and increased atherosclerotic plaque, as compared with HCD-fed ApoE-/- mice. Since treatment of AceK in RAW264.7 macrophages showed no significant effects on inflammatory cytokine expressions, we then investigated the impacts of AceK on lipid metabolism. We found that AceK consumption enhanced hepatic lipogenesis and decreased ß-oxidation in ApoE-/- mice. In addition, AceK directly increased lipogenesis and decreased ß-oxidation in HepG2 cells. Taken together, a concurrent consumption of AceK exacerbated HCD-induced dyslipidemia and atherosclerotic lesion in ApoE-/- mice, and AceK might increase the risk of atherosclerosis under HCD.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Aterosclerose/patologia , Progressão da Doença , Metabolismo dos Lipídeos , Adoçantes não Calóricos/efeitos adversos , Tiazinas/efeitos adversos , Animais , Apolipoproteínas E/metabolismo , Aterosclerose/complicações , Aterosclerose/genética , Citocinas/metabolismo , Dieta Hiperlipídica , Dislipidemias/complicações , Regulação da Expressão Gênica , Células Hep G2 , Homeostase , Humanos , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Knockout , Células RAW 264.7 , Tiazinas/administração & dosagem
13.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830462

RESUMO

Acute serum amyloid A (SAA) is an apolipoprotein that mediates pro-inflammatory and pro-atherogenic pathways. SAA-mediated signalling is diverse and includes canonical and acute immunoregulatory pathways in a range of cell types and organs. This study aimed to further elucidate the roles for SAA in the pathogenesis of vascular and renal dysfunction. Two groups of male ApoE-deficient mice were administered SAA (100 µL, 120 µg/mL) or vehicle control (100 µL PBS) and monitored for 4 or 16 weeks after SAA treatment; tissue was harvested for biochemical and histological analyses at each time point. Under these conditions, SAA administration induced crosstalk between NF-κB and Nrf2 transcriptional factors, leading to downstream induction of pro-inflammatory mediators and antioxidant response elements 4 weeks after SAA administration, respectively. SAA treatment stimulated an upregulation of renal IFN-γ with a concomitant increase in renal levels of p38 MAPK and matrix metalloproteinase (MMP) activities, which is linked to tissue fibrosis. In the kidney of SAA-treated mice, the immunolocalisation of inducible nitric oxide synthase (iNOS) was markedly increased, and this was localised to the parietal epithelial cells lining Bowman's space within glomeruli, which led to progressive renal fibrosis. Assessment of aortic root lesion at the study endpoint revealed accelerated atherosclerosis formation; animals treated with SAA also showed evidence of a thinned fibrous cap as judged by diffuse collagen staining. Together, this suggests that SAA elicits early renal dysfunction through promoting the IFN-γ-iNOS-p38 MAPK axis that manifests as the fibrosis of renal tissue and enhanced cardiovascular disease.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/genética , Interferon gama/genética , Proteína Amiloide A Sérica/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Animais , Aorta/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/sangue , Aterosclerose/patologia , Humanos , Inflamação/sangue , Inflamação/genética , Inflamação/patologia , Nefropatias/genética , Nefropatias/patologia , Masculino , Metaloproteases/genética , Camundongos , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , Óxido Nítrico Sintase Tipo II/genética , Transdução de Sinais/genética
14.
Bioengineered ; 12(2): 10994-11006, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34775883

RESUMO

MicroRNAs play important roles in atherosclerogenesis and are important novel pharmaceutic targets in atherosclerosis management. The whole spectrum of miRNAs dysregulation is still under intense investigation. This study intends to identify more novel dysregulated microRNAs in atherosclerotic mice. Half of eight-week-old male ApoE-/- mice were fed with high-fat-diet for 12 weeks as a model mice, and the remaining half of ApoE-/- mice were fed with a normal-diet as a control. A serum lipid profile was performed with ELISA kits, and atherosclerotic lesions were assessed. Aortic tissues were dissected for gene expression profiling using a Multispecies miRNA 4.0 Array, and significant differentially expressed miRNAs were identified with fold change ≥ 2 and p < 0.05. Real-time quantitative PCR was used to validate microarray gene expression data on selected genes. Predicted target genes were extracted and subjected to bioinformatic analysis for molecular function and pathway enrichment analysis. Model mice showed a 15.32% atherosclerotic lesion compared to 1.52% in the control group. A total of 25 significant differentially expressed microRNAs were identified, with most of them (24/25) downregulated. Real-time quantitative PCR confirmed the GeneChip data. Bioinformatic analysis of predicted target genes identified high involvement of the PI3K/Akt/mTOR signaling pathway. Microarray profiling of miRNAs in high-fat-fed Model mice identified 25 differentially expressed miRNAs, including some novel miRNAs, and the PI3K/Akt/mTOR signaling pathway is highly enriched in the predicted target genes. The novel identified dysregulated miRNAs suggest a broader spectrum of miRNA dysregulation in the progression of atherosclerosis and provide more research and therapeutic targets for atherosclerosis.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/genética , Aterosclerose/patologia , Progressão da Doença , MicroRNAs/metabolismo , Animais , Apolipoproteínas E/metabolismo , Aterosclerose/sangue , HDL-Colesterol/sangue , Dieta Hiperlipídica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Hiperlipidemias/sangue , Masculino , Camundongos , Reprodutibilidade dos Testes
15.
Exp Eye Res ; 213: 108854, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34808137

RESUMO

The etiology of age-related macular degeneration (AMD) is diverse; however, recent evidence suggests that the lipid metabolism-cholesterol pathway might be associated with the pathophysiology of AMD. The ATP-binding cassette (ABC) transporters, ABCA1 and ABCG1, are essential for the formation of high-density lipoprotein (HDL) and the regulation of macrophage cholesterol efflux. The failure of retinal or retinal pigment epithelium (RPE) cholesterol efflux to remove excess intracellular lipids causes morphological and functional damage to the retina. In this study, we investigated whether treatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMP-activated protein kinase (AMPK) activator, improves RPE cholesterol efflux and Bruch's membrane (BM) lipid deposits. The protein and mRNA levels of ABCA1 and ABCG1 in ARPE-19 cells and retinal and RPE/choroid tissue from apolipoprotein E-deficient (ApoE-/-) mice were evaluated after 24 weeks of AICAR treatment. The cholesterol efflux capacity of ARPE-19 cells and the cholesterol-accepting capacity of apoB-depleted serum from mice were measured. The thickness of the BM and the degree of lipid deposition were evaluated using electron microscopy. AICAR treatment increased the phosphorylation of AMPK and the protein and mRNA expression of ABCA1 and ABCG1 in vitro. It promoted cholesterol efflux from ARPE-19 cells and upregulated the protein and mRNA levels of ABCA1 and ABCG1 in the retina and RPE in vivo. ApoB-depleted serum from the AICAR-treated group showed enhanced cholesterol-accepting capacity. Long-term treatment with AICAR reduced BM thickening and lipid deposition in ApoE-/- mice. In conclusion, AICAR treatment increased the expression of lipid transporters in the retina and RPE in vivo, facilitated intracellular cholesterol efflux from the RPE in vitro, and improved the functionality of HDL to accept cholesterol effluxed from the cell, possibly via AMPK activation. Collectively, these effects might contribute to the improvement of early age-related pathologic changes in the BM. Pharmacological improvement of RPE cholesterol efflux via AMPK activation may be a potential treatment strategy for AMD.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Lâmina Basilar da Corioide/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos/fisiologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Aminoimidazol Carboxamida/farmacologia , Animais , Apolipoproteínas E/deficiência , Western Blotting , Lâmina Basilar da Corioide/metabolismo , Linhagem Celular , Colesterol/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/metabolismo , Tomografia de Coerência Óptica , Regulação para Cima
16.
Cells ; 10(11)2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34831473

RESUMO

Anti-inflammatory low-dose therapy is well established, whereas the immunomodulatory impact of doses below 0.1 Gy is much less clear. In this study, we investigated dose, dose rate and time-dependent effects in a dose range of 0.005 to 2 Gy on immune parameters after whole body irradiation (IR) using a pro-inflammatory (ApoE-/-) and a wild type mouse model. Long-term effects on spleen function (proliferation, monocyte expression) were analyzed 3 months, and short-term effects on immune plasma parameters (IL6, IL10, IL12p70, KC, MCP1, INFγ, TGFß, fibrinogen, sICAM, sVCAM, sE-selectin/CD62) were analyzed 1, 7 and 28 days after Co60 γ-irradiation (IR) at low dose rate (LDR, 0.001 Gy/day) and at high dose rate (HDR). In vitro measurements of murine monocyte (WEHI-274.1) adhesion and cytokine release (KC, MCP1, IL6, TGFß) after low-dose IR (150 kV X-ray unit) of murine endothelial cell (EC) lines (H5V, mlEND1, bEND3) supplement the data. RT-PCR revealed significant reduction of Ki67 and CD68 expression in the spleen of ApoE-/- mice after 0.025 to 2 Gy exposure at HDR, but only after 2 Gy at LDR. Plasma levels in wild type mice, showed non-linear time-dependent induction of proinflammatory cytokines and reduction of TGFß at doses as low as 0.005 Gy at both dose rates, whereas sICAM and fibrinogen levels changed in a dose rate-specific manner. In ApoE-/- mice, levels of sICAM increased and fibrinogen decreased at both dose rates, whereas TGFß increased mainly at HDR. Non-irradiated plasma samples revealed significant age-related enhancement of cytokines and adhesion molecules except for sICAM. In vitro data indicate that endothelial cells may contribute to systemic IR effects and confirm changes of adhesion properties suggested by altered sICAM plasma levels. The differential immunomodulatory effects shown here provide insights in inflammatory changes occurring at doses far below standard anti-inflammatory therapy and are of particular importance after diagnostic and chronic environmental exposures.


Assuntos
Apolipoproteínas E/deficiência , Inflamação/patologia , Radiação Ionizante , Envelhecimento/sangue , Animais , Adesão Celular/efeitos da radiação , Linhagem Celular , Citocinas/metabolismo , Relação Dose-Resposta à Radiação , Células Endoteliais/efeitos da radiação , Feminino , Inflamação/sangue , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/efeitos da radiação , Baço/efeitos da radiação , Fatores de Tempo
17.
Nutrients ; 13(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34684577

RESUMO

Hyperhomocysteneinemia (HHcy) is common in the general population and is a risk factor for atherosclerosis by mechanisms that are still elusive. A hypomethylated status of epigenetically relevant targets may contribute to the vascular toxicity associated with HHcy. Ketogenic diets (KD) are diets with a severely restricted amount of carbohydrates that are being widely used, mainly for weight-loss purposes. However, studies associating nutritional ketosis and HHcy are lacking. This pilot study investigates the effects of mild HHcy induced by nutritional manipulation of the methionine metabolism in the absence of dietary carbohydrates on disease progression and specific epigenetic changes in the apolipoprotein-E deficient (apoE-/-) mouse model. ApoE-/- mice were either fed a KD, a diet with the same macronutrient composition but low in methyl donors (low methyl KD, LMKD), or control diet. After 4, 8 or 12 weeks plasma was collected for the quantification of: (1) nutritional ketosis, (i.e., the ketone body beta-hydroxybutyrate using a colorimetric assay); (2) homocysteine by HPLC; (3) the methylating potential S-adenosylmethionine to S-adenosylhomocysteine ratio (AdoHcy/AdoMet) by LC-MS/MS; and (4) the inflammatory cytokine monocyte chemoattractant protein 1 (MCP1) by ELISA. After 12 weeks, aortas were collected to assess: (1) the vascular AdoHcy/AdoMet ratio; (2) the volume of atherosclerotic lesions by high-field magnetic resonance imaging (14T-MRI); and (3) the content of specific epigenetic tags (H3K27me3 and H3K27ac) by immunofluorescence. The results confirmed the presence of nutritional ketosis in KD and LMKD mice but not in the control mice. As expected, mild HHcy was only detected in the LMKD-fed mice. Significantly decreased MCP1 plasma levels and plaque burden were observed in control mice versus the other two groups, together with an increased content of one of the investigated epigenetic tags (H3K27me3) but not of the other (H3K27ac). Moreover, we are unable to detect any significant differences at the p < 0.05 level for MCP1 plasma levels, vascular AdoMet:AdoHcy ratio levels, plaque burden, and specific epigenetic content between the latter two groups. Nevertheless, the systemic methylating index was significantly decreased in LMKD mice versus the other two groups, reinforcing the possibility that the levels of accumulated homocysteine were insufficient to affect vascular transmethylation reactions. Further studies addressing nutritional ketosis in the presence of mild HHcy should use a higher number of animals and are warranted to confirm these preliminary observations.


Assuntos
Apolipoproteínas E/deficiência , Metilação de DNA/genética , Dieta Cetogênica , Epigênese Genética , Acetilação , Animais , Peso Corporal , Quimiocina CCL2/sangue , Histonas/metabolismo , Homocisteína/sangue , Cetose/sangue , Cetose/genética , Lisina/metabolismo , Masculino , Metaboloma , Camundongos , Projetos Piloto , Placa Aterosclerótica/sangue , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Processamento de Proteína Pós-Traducional
18.
Arterioscler Thromb Vasc Biol ; 41(12): e512-e523, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34706557

RESUMO

OBJECTIVE: Gestational hypercholesterolemia concomitantly with a highly oxidative environment is associated with higher atherosclerosis in human and animal offspring. This work aimed to determine whether perinatal administration of a C-phycocyanin concentrate, a powerful antioxidant, can protect against atherosclerosis development in genetically hypercholesterolemic mice in adult life. Approach and Results: C-Phycocyanin was administered during gestation solely or gestation and lactation to apolipoprotein E-deficient mice. Male and female offspring were studied until 25 weeks old. Progenies born to supplemented mothers displayed significantly less atherosclerotic root lesions than control group in all groups excepted in male supplemented during gestation and lactation. Female born to supplemented mothers had a greater gallbladder total bile acid pool, lower secondary hydrophobic bile acid levels such as lithocholic acid, associated with less plasma trimethylamine N-oxide at 16 weeks old compared with control mice. Regarding male born to C-Phycocyanin administrated mothers, they expressed a higher high-density lipoprotein cholesterol level, more soluble bile acids such as ß-muricholic acids, and a decreased plasma trimethylamine at 16 weeks old. Liver reduced-to-oxidized glutathione ratio were increased and liver gene expression of superoxide dismutase and glutathione peroxidase were significantly decreased in male born to gestational supplemented mothers. No difference in the composition of cecal microbiota was found between groups, regardless of sex. CONCLUSIONS: Our findings suggest a protective effect of perinatal antioxidant administration on atherosclerosis development in apolipoprotein E-deficient mice involving sex-specific mechanisms.


Assuntos
Aterosclerose/prevenção & controle , Colesterol/metabolismo , Metilaminas/metabolismo , Ficocianina/administração & dosagem , Animais , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Biomolecules ; 11(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34680067

RESUMO

OBJECTIVE: Epidemiological studies link hyperlipidemia with increased risk for abdominal aortic aneurysms (AAAs). However, the influence of lipid-lowering drugs statins on prevalence and progression of clinical and experimental AAAs varies between reports, engendering controversy on the association of hyperlipidemia with AAA disease. This study investigated the impact of hypercholesterolemia on elastase-induced experimental AAAs in mice. METHODS: Both spontaneous (targeted deletion of apolipoprotein E) and induced mouse hypercholesterolemia models were employed. In male wild type (WT) C57BL/6J mice, hypercholesterolemia was induced via intraperitoneal injection of an adeno-associated virus (AAV) encoding a gain-of-function proprotein convertase subtilisin/kexin type 9 mutation (PCSK9) followed by the administration of a high-fat diet (HFD) (PCSK9+HFD) for two weeks. As normocholesterolemic controls for PCSK9+HFD mice, WT mice were infected with PCSK9 AAV and fed normal chow, or injected with phosphate-buffered saline alone and fed HFD chow. AAAs were induced in all mice by intra-aortic infusion of porcine pancreatic elastase and assessed by ultrasonography and histopathology. RESULTS: In spontaneous hyper- and normo-cholesterolemic male mice, the aortic diameter enlarged at a constant rate from day 3 through day 14 following elastase infusion. AAAs, defined as a more than 50% diameter increase over baseline measurements, formed in all mice. AAA progression was more pronounced in male mice, with or without spontaneous hyperlipidemia. The extent of elastin degradation and smooth muscle cell depletion were similar in spontaneous hyper- (score 3.5 for elastin and 4.0 for smooth muscle) and normo- (both scores 4.0) cholesterolemic male mice. Aortic mural macrophage accumulation was also equivalent between the two groups. No differences were observed in aortic accumulation of CD4+ or CD8+ T cells, B cells, or mural angiogenesis between male spontaneous hyper- and normocholesterolemic mice. Similarly, no influence of spontaneous hypercholesterolemia on characteristic aneurysmal histopathology was noted in female mice. In confirmatory experiments, induced hypercholesterolemia also exerted no appreciable effect on AAA progression and histopathologies. CONCLUSION: This study demonstrated no recognizable impact of hypercholesterolemia on elastase-induced experimental AAA progression in both spontaneous and induced hypercholesterolemia mouse models. These results add further uncertainty to the controversy surrounding the efficacy of statin therapy in clinical AAA disease.


Assuntos
Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/patologia , Progressão da Doença , Hipercolesterolemia/complicações , Animais , Aorta Abdominal/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Elastase Pancreática
20.
Life Sci ; 284: 119935, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34508760

RESUMO

OBJECTIVE: Atherosclerotic vascular disease remains the principal cause of death and disability among patients with type 2 diabetes. Unfortunately, the problem is not adequately resolved by therapeutic strategies with currently available drugs or approaches that solely focus on optimal glycemic control. To identify the key contributors and better understand the mechanism of diabetic atherosclerotic vascular disease, we aimed to elucidate the key genetic characteristics and pathological pathways in atherosclerotic vascular disease through nonbiased bioinformatics analysis and subsequent experimental demonstration and exploration in diabetic atherosclerotic vascular disease. METHODS AND RESULTS: Sixty-eight upregulated and 23 downregulated genes were identified from the analysis of gene expression profiles (GSE30169 and GSE6584). A comprehensive bioinformatic assay further identified that ferroptosis, a new type of programmed cell death and HMOX1 (a gene that encodes heme oxygenase), were vital factors in atherosclerotic vascular disease. We further demonstrated that diabetes significantly increased ferroptosis and HMOX1 levels compared to normal controls. Importantly, the ferroptosis inhibitor ferrostatin-1 (Fer-1) effectively attenuated diabetic atherosclerosis, suggesting the causative role of ferroptosis in diabetic atherosclerosis development. At the cellular level, Fer-1 ameliorated high glucose high lipid-induced lipid peroxidation and downregulated ROS production. More importantly, HMOX1 knockdown attenuated Fe2+ overload, reduced iron content and ROS, and alleviated lipid peroxidation, which led to a reduction in ferroptosis in diabetic human endothelial cells. CONCLUSIONS: We demonstrated that HMOX1 upregulation is responsible for the increased ferroptosis in diabetic atherosclerosis development, suggesting that HMOX1 may serve as a potential therapeutic or drug development target for diabetic atherosclerosis.


Assuntos
Aterosclerose/enzimologia , Aterosclerose/genética , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/genética , Ferroptose , Heme Oxigenase-1/genética , Regulação para Cima , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Aterosclerose/complicações , Aterosclerose/patologia , Cicloexilaminas/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica , Progressão da Doença , Comportamento Alimentar , Feminino , Ferroptose/efeitos dos fármacos , Perfilação da Expressão Gênica , Glutationa/metabolismo , Heme Oxigenase-1/antagonistas & inibidores , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Sobrecarga de Ferro/complicações , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos Knockout , NADP/metabolismo , Fenilenodiaminas/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...